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Abstract— Wireless multicast/broadcast sessions, un-
like wired networks, inherently reaches several nodes with
a single transmission. For omnidirectional wireless broad-
cast to a node, all nodes closer will also be reached. Heuris-
tic algorithms for constructing the minimum power tree
in wireless networks have been proposed by Wieselthier
et al. and Stojmenovic et al. Recently, an evolutionary
search procedure has been proposed by Marks et al. In
this paper, we present three different integer programming
models which can be used for an optimal solution of the
minimum power broadcast/multicast problem in wireless
networks. The models assume complete knowledge of the
distance matrix and is therefore most suited for networks
where the locations of the nodes are fixed.

I. INTRODUCTION

For a given node constellation with an identified
source node, the minimum power broadcast (MPB)
problem is to communicate to all remaining nodes,
either directly or hopping, such that the overall
transmission power is minimized. We assume that
no power expenditure is involved in signal recep-
tion/processing activities. Unlike wired networks,
where a transmission i → j reaches only node j, it is
possible to reach several nodes by a single transmis-
sion in wireless networks. If all nodes have omnidi-
rectional antennas, nodes which are closer to i than j

will also receive the transmission directed to j. This
is the wireless advantage property [1].

To the best of our knowledge, a couple of heuris-
tic procedures have been suggested so far for solving
the MPB problem in wireless networks. Wieselthier,
Nguyen and Ephremides [1] proposed the broadcast
incremental power (BIP) algorithm for constructing
the minimum-power tree for wireless networks. In
this algorithm, new nodes are added to the tree on
a minimum incremental cost basis, until all intended
destination nodes are included. An internal nodes

based broadcasting procedure was suggested by Sto-
jmenovic, Seddigh and Zunic [5]. Recently, an evolu-
tionary approach using genetic algorithms has been
proposed by Marks, Das, El-Sharkawi, Arabshahi and
Gray [3]. Methods for generating initial solutions
and checking the viability of evolved solutions are de-
scribed in [3].

While the performances of the above procedures
can certainly be compared among themselves, in the
absence of any optimal solution procedure, it has not
been possible to judge the quality of the solutions
with respect to the optimal. This paper attempts
to fill that void by proposing three different integer
programming (IP) models that can be solved by any
standard IP technique, e.g., linear programming (LP)
based branch-and-bound. All the models discussed
in this paper assume complete knowledge of pairwise
distances between the nodes.

II. NETWORK MODEL

We assume a fixed N -node network with a speci-
fied source node which has to broadcast a message
to all other nodes in the network. Any node can
be used as a relay node to reach other nodes in the
network. Nodes that receive a transmission but do
not retransmit it are classified as leaf nodes. Nodes
that transmit, including the source node, are called
hop nodes. The remaining nodes are unconnected.
Clearly, in a broadcast application, there cannot be
any unconnected nodes in a connection tree. In a mul-
ticast (source-to-many) application, we assume that
it is possible to use non-destination nodes as a hop
node to relay information to a destination node(s).

For a transmission from node i to j, separated by a
distance rij, the transmitter power at node i is mod-
eled to be proportional to rα

ij where α is the channel
loss exponent (typically between 2 and 4, depending



on the channel medium). Without any loss of gener-
ality, we can set the proportionality constant to one,
so that the transmitter power, pT , at node i is given
by:

pT = rα
ij (1)

III. MPB vs. TSP

In this section, we explain the similarities and the
differences between the MPB problem in wireless net-
works and the traveling salesman problem (TSP).
Given a set of N cities and a cost cij of moving from
city i to city j (1 ≤ i 6= j ≤ N), the TSP attempts
to find a minimum cost tour of the cities, subject to
the following constraints:

• Constraint (1): Departing from his home base,
the salesman must visit each city exactly once.

• Constraint (2): After visiting a city, the salesman
must leave for another city.

• Constraint (3): The salesman must return to his
home base.

• Constraint (4): No subtours (i.e., cycles not in-
cluding the home base) are allowed.

A variation of this problem is the open tour (OT)
case, where the salesman need not return to his home
base (constraint (3) relaxed) after visiting all cities.
Also, constraint (4) is modified so that “there are no
cycles in the optimal solution”. We will refer to this
variation of the TSP as the OT-TSP.

The OT-TSP is closely related to the minimum
spanning tree (MST) problem. Given an undirected
graph G = (V , E), where V is the set of vertices and
E is the set of edges, the MST problem seeks to find
the tree spanning G such that the total edge weight
is minimum. Explained in the context of the trav-
eling salesman, solving the TSP without constraints
(2) and (3) and with a modified constraint (4) as
explained above yields the MST. Note that relaxing
constraint (2) implies:

• It is not necessary for the salesman to make a
trip out of every city.

• Multiple trips may be made out of a city.

The MPB problem in wireless networks can be
viewed from the perspective of the OT-TSP as well as
the MST. We first examine the MPB problem from
the context of the OT-TSP. Section IV details the
similarities and the differences between the MPB and
the MST problems.

If the rules of the OT-TSP are modified such
that:

• if the salesman actually visits city j from city i,
he can claim to have also implicitly visited all
cities within the circle centered at i and radius
rij . Note that while actual visitations incur a
cost, implicit visitations are free. Figure 1 illus-
trates the actually and implicitly visited nodes
associated with the transmission i → j. The
solid line indicates an actual transmission while
the dashed lines indicate implicit transmissions.

• the salesman must have actually or implicitly vis-
ited city i before he can make a trip out of city
i.

• the salesman can make at most one trip out of
city i.

• departing from his home base, the salesman has
to visit all cities, actually or implicitly.

we have the wireless MPB problem in wireless net-
works. This interpretation of the MPB problem will
be used to develop an IP model of the MPB problem
in Section VI. In a network context, the salesmans
implicit visitation privileges are a consequence of the
wireless nature of the network.

Fig. 1. Illustration of actually visited nodes and implicitly vis-
ited nodes in wireless networks.

An important difference between OT-TSP and the
above interpretation of MPB is that, while each city
in OT-TSP has to be visited exactly once, the op-
timal solution in MPB can involve multiple implicit
visitations to a node since no cost is incurred due to
such visitations. Referring to the 5-node network in
Figure 2, suppose the optimal MPB tree is {4 → 2,
3 → 5}. Note that nodes 1 and 3 are closer to node 4
than node 2 and nodes 1, 2 and 4 are closer to node 3
than node 5. If the source (node 4) uses this tree to
communicate with other nodes in the network, nodes
1 and 2 will receive the transmission twice; implicitly
in both cases for node 1 but once actually and once
implicitly for node 2.



Fig. 2. An example 5-node network.

IV. ALTERNATE VIEW OF IMPLICIT
VISITATION

From the traveling salesman aspect, implicit visita-
tions can be alternately interpreted as the salesman
being allowed to make any number of actual trips
(note the similarity here with the MST problem) out
of a city, with the condition that the cost he incurs
is the maximum of the individual costs of the trips
he makes out of the city. We will illustrate with an
example.

Fig. 3. An example 8-node network to illustrate alternate view
of implicit visitation

In Figure 3, the solid lines indicate the costliest paths
out of any city. Suppose the optimal MPB solution
for the above network is: {3 → 4, 4 → 6, 6 → 8, 5 →
7}. This solution is interpreted as follows:

1) the salesman makes three actual trips out of
city 3, to cities 1, 2 and 4. Charged only for the
trip to 4.

2) makes two actual trips out of city 4, to cities 5

and 6. Charged only for the trip to 6.
3) makes one actual trip out of city 5, to city 7.

Charged for the trip.
4) makes one actual trip out of city 6, to city 8.

Charged for the trip.
5) makes no trips out of cities 1, 2, 7 and 8.

The difference between the MST problem and the
MPB problem in wireless networks is now evident.
Let Cij be the cost of the arc (i, j) and Xij be a
binary variable such that it is equal to 1 if the edge
(i, j) is used in the final solution and 0 otherwise.
The objective functions for the MST and the MPB
can then be written as follows:

MST : minimize
∑

i

∑

j

CijXij ; i 6= j (2)

MPB : minimize
∑

i

maxj (CijXij) ; i 6= j

(3)

It follows from (2) and (3) that the MST of a wired
network is not necessarily the MPB solution if the
same network is assumed to be wireless. Equations
(2) and (3) also imply that the cost of the MPB so-
lution for wireless networks can be no worse than the
cost of the MST solution. The ideas discussed in this
section will be used to develop an alternate IP model
of the MPB problem in Section VII.

V. TERMINOLOGY

Before discussing the IP models for the MPB prob-
lem, we offer the following definitions.

A. Power Matrix

For an N -node network, the power matrix, P, is an
N ×N matrix. The (i, j)th element of the power ma-
trix defines the power required for node i to transmit
to node j and is given by:

Pij =
[

(xi − xj)
2 + (yi − yj)

2
]α/2

= rα
ij (4)

where {(xi, yi) : 1 ≤ i ≤ N} are the coordinates of the
nodes in the network, α is the channel loss exponent
and rij is the Euclidean distance between nodes i and
j. For example, the power matrix of the network in
Figure 4, assuming α = 2, is:

P =











0 8.4645 12.5538 13.6351
8.4645 0 0.5470 3.8732

12.5538 0.5470 0 5.7910
13.6351 3.8732 5.7910 0











(5)



Fig. 4. Example 4-node network: node 4 is the source.

B. Reward Matrix

Each transmission in a wireless network will result
in one or more nodes being reached. The reward ma-
trix, R, of a network is an N -element binary encoding
of all the nodes covered (or not covered) by all possi-
ble transmissions in the network. In MATLAB c© no-
tation, R is a cell array, each cell being an N -element
vector. We will use the notation Rmn(p) to index the
pth element of the (m,n) cell in R.

The reward matrix is computed as follows:

Rmn(p) =

{

1, if Pmp ≤ Pmn

0, otherwise

For example, referring to Figure 4, the transmission
2 → 4 will result in nodes 3 and 4 being covered. This
information is encoded in the (2,4) cell of the reward
matrix as: R24 = [0 0 1 1]. The reward matrix of the
wireless network in Figure 4 is:

R =











[0 0 0 0] [0 1 0 0] [0 1 1 0] [0 1 1 1]
[1 0 1 1] [0 0 0 0] [0 0 1 0] [0 0 1 1]
[1 1 0 1] [0 1 0 0] [0 0 0 0] [0 1 0 1]
[1 1 1 0] [0 1 0 0] [0 1 1 0] [0 0 0 0]











(6)

Note that the reward matrix is not necessarily “sym-
metric”; i.e., the vector Rmn is not necessarily equal
to Rnm. For example, referring to (6), while the
transmission 1 → 3 reaches nodes 2 and 3 (R13), the
transmission 3 → 1 reaches nodes 1, 2 and 4 (R31).

VI. IP FORMULATION ‘A’

Referring to the 4-node network in Figure 4, let
{Yi : 1 ≤ i ≤ 4} be the transmitter power levels at
the 4 nodes (continuous variables) and {Xij : 1 ≤ i 6=
j ≤ 4} be binary variables such that Xij = 1 if the

transmission i → j is used in the final solution and 0
otherwise.

The objective function is therefore:

minimize

4
∑

i=1

Yi (7)

The first set of constraints defines the relations be-
tween the continuous variables Yi and the binary vari-
ables Xij . These are:

Yi −
4

∑

j=1

PijXij = 0; i 6= j, 1 ≤ i ≤ 4 (8)

where Pij is the (i, j)th element of the power matrix
P.

In the wireless MPB problem, only the source node
is required to transmit exactly once. Other nodes
may or may not transmit. However, if a node does
transmit, it can do so once. These conditions are
expressed using the following constraints.

X12 + X13 + X14 ≤ 1

X21 + X23 + X24 ≤ 1

X31 + X32 + X34 ≤ 1 (9)

X41 + X42 + X43 = 1

Next, we introduce integer auxiliary variables Xijk
1

which are equal to 1 if the kth transmission in the
final solution is i → j and 0 otherwise. Note that,
for an N -node network, there can be at most N − 1
steps (transmissions) in the solution (1 ≤ k ≤ N −
1). These auxiliary variables are necessary to ensure
proper sequentiality2 of the final solution. The set of
constraints in (10) defines the relation between the
variables Xijk and Xij .

Xij =
3

∑

k=1

Xijk, 1 ≤ i 6= j ≤ 4 (10)

Since the first transmission must be from the source
(node 4 in our example), we can write:

X41(1) + X42(1) + X43(1) = 1; (11)

X12(1) + X13(1) + X14(1)

+ X21(1) + X23(1) + X24(1)

+ X31(1) + X32(1) + X34(1) = 0; (12)
1A similar auxiliary variable formulation for the TSP was

suggested by Flood [6].
2Sequentiality here means that if node i is the transmitting

node in the kth step of the solution, it must have been reached
by any of the transmissions upto step k − 1



where the k indices have been put in parentheses for
clarity.

The set of nodes that can transmit in step 2 is
restricted by the choice of transmission in step 1. For
example, if node 3 is to transmit in step 2, it has to be
reached by the transmission in step 1; i.e., we must
have either X41(1) = 1 or X43(1) = 1. Note that the
possible transmissions in step 1 are 4 → 1, 4 → 2 and
4 → 3. Of these possible transmissions, node 3 can
be reached only if the transmission chosen is either
4 → 1 or 4 → 3. This information is contained in
cell R43 of the reward matrix. Similarly, node 1 can
transmit in step 2 if the transmission chosen in step
1 is 4 → 1 and node 2 can transmit in step 2 if the
transmission chosen in step 1 is either 4 → 1 or 4 → 2
or 4 → 3. We can thus set up the node transmission

blocking constraints for step 2 as follows:

X12(2) + X13(2) + X14(2) − X41(1) ≤ 0;

X21(2) + X23(2) + X24(2) − X41(1) − X42(1) − X43(1) ≤ 0;
(13)

X31(2) + X32(2) + X34(2) − X41(1) − X43(1) ≤ 0;

Note that, for example, if X41(1) + X43(1) = 1 (⇒
node 3 has been reached in step 1), the expression
X31(2) +X32(2) +X34(2) can be either 0 or 1. This im-
plies that node 3 is free to transmit in step 2; whether
it does so or not is to be decided by the optimiza-
tion process. However, if X41(1) + X43(1) = 0 (⇒
node 3 has not been reached in step 1), the expres-
sion X31(2) + X32(2) + X34(2) is forced to be 0.

In general, the condition that node i (i 6= source)
can transmit in step k (k ≥ 2) only if it has been
reached by any of the transmissions upto step k − 1
can be expressed as:

N
∑

j=1

Xijk −
k−1
∑

p=1

N
∑

m,n=1

m6=n

Rmn(i)Xmnp ≤ 0; i 6= j

(14)

If node i has not been reached by step k − 1,

k−1
∑

p=1

N
∑

m,n=1

m6=n

Rmn(i)Xmnp = 0; i 6= source

(15)

and hence the term
∑N

j=1 Xijk in (14) is forced to be
zero, implying no transmission from node i in step
k. The expression on the left hand side of (15) is
therefore an indicator of whether node i has been
reached or not by step k − 1. Also, for k = N , the

term

N−1
∑

p=1

N
∑

m,n=1

m6=n

Rmn(i)Xmnp ≡
N

∑

m,n=1

m6=n

Rmn(i)Xmn

equals the number of times node i is reached in the
final solution. Consequently, if we assume that there
is a fixed cost associated with signal reception (say
α), which we have ignored so far, adding the term

α







N
∑

i=1

N
∑

m,n=1

m6=n

Rmn(i)Xmn







to the objective function will ensure that the final
solution is optimal with respect to the sum of total
transmission and reception powers.

The next set of constraints are step transmission

forcing constraints and ensures that there is a trans-
mission for step 2 if there is at least one node which
has not been reached upto step 1.

4
∑

m,n=1

m6=n

Xmn(2) ≤ 1; (16)

1
∑

p=1

4
∑

m,n=1

m6=n

Rmn(i)Xmnp +
4

∑

m,n=1

m6=n

Xmn(2) ≥ 1;∀i 6= source

(17)

Constraint (16) ensures that there is at most one
transmission in step 2. Constraint (17) forces the
term on the left hand side of (16) to be equal to 1
(thereby forcing a transmission) if at least one of the
terms in

1
∑

p=1

4
∑

m,n=1

m6=n

Rmn(i)Xmnp, ∀i 6= source

is 0 (i.e., there is at least one node which has not
been reached after step 1).

The node transmission blocking constraints and
step transmission forcing constraints need to be re-
peated for all steps 2 ≤ k ≤ N − 1. For our 4-node
example, we therefore have:

4
∑

j=1

j 6=i

Xij(3) −
2

∑

p=1

4
∑

m,n=1

m6=n

Rmn(i)Xmnp ≤ 0;∀i 6= source

(18)

4
∑

m,n=1

m6=n

Xmn(3) ≤ 1; (19)

2
∑

p=1

4
∑

m,n=1

m6=n

Rmn(i)Xmnp +
4

∑

m,n=1

m6=n

Xmn(3) ≥ 1;∀i 6= source

(20)



Finally, in a broadcast application, all nodes must be
reached after the last step. As noted before in Section
(III), in a wireless network, it is possible for one or
more nodes to be reached more than once. The set
of constraints (node reachability constraints) which
ensures that all nodes (other than the source) are
reached at least once in the solution is:

4
∑

m,n=1

m6=n

Rmn(i)Xmn ≥ 1; ∀i 6= source (21)

A. IP Formulation ‘A’: Generalized Model

Let V be the set of all nodes in the network and
D the set of intended destination nodes. For broad-
cast applications, the set D is the set of all nodes in
V except the source and for multicast applications,
the set D is the set of some nodes in V except the
source. The IP formulation explained above for the
example 4-node network can be easily generalized for
broadcast/multicast applications in an N -node wire-
less network, as shown in Figure 5. Note that no
upper bound is required to be declared for the inte-
ger variables Xijk as it is set implicitly by equations
(23), (24) and (25). The number of variables and
constraints in this formulation are both of the order
O(N3) (assuming kMAX = N −1), similar to Flood’s
IP formulation of the TSP [6].

B. Obtaining sub− optimal solutions by limiting k

We mentioned in Section VI that the node trans-
mission blocking constraints and step transmission
forcing constraints need to be repeated for all steps
2 ≤ k ≤ N − 1 in a broadcast application. This
is necessary to obtain the optimal solution. A
sub-optimal solution can however be obtained us-
ing the same model by limiting k such that k ≤
kMAX ≤ N−1. Doing so would not render the prob-
lem infeasible3 because the 1-step solution {source →
node farthest from source} covers all the nodes and
hence is always feasible. In fact, it can be argued that
a feasible solution exists for all choices of k. To see
why, let πN = {i1, i2 · · · iN−1, iN} be an ordering of
the nodes in an N -node network such that i1 is the
source, i2 is the node closest to the source, · · · and
iN is the node farthest from the source. For any k, it
can be easily verified that the transmission sequence
{i1 → ik → ik+1 → ik+2 · · · iN−2 → iN−1 → iN} is
always a feasible broadcast tree. For example, in a

3Feasibility implies that all destination nodes are reached

5-node network with node 1 being the source, sup-
pose π5 = {1, 5, 2, 4, 3}. For k = 3, the transmission
sequence {1 → 2, 2 → 4, 4 → 3} constitutes a valid
broadcast tree.

VII. IP FORMULATION ‘B’

This formulation utilizes the alternate view of im-
plicit visitation discussed in Section IV. Let {Yi : 1 ≤
i ≤ N} be the transmitter power levels at the nodes
(continuous variables) and {Xij : 1 ≤ i 6= j ≤ N} be
binary variables such that Xij = 1 if the transmission
i → j is used in the final solution and 0 otherwise. V

is the set of all nodes in the network and D is the set
of intended destination nodes.

As in Section VI, the objective function is:

minimize

N
∑

i=1

Yi (33)

The first set of constraints are used for proper cost
accounting and reflects the condition that the cost
incurred at node i is the maximum of the individual
costs of the transmissions out of node i (Section IV).

Yi −PijXij ≥ 0; ∀(i, j) ∈ V, i 6= j (34)

where Pij is the (i, j)th element of the power matrix
P.

The next set of constraints expresses the condition
that the source node must transmit at least once. No
constraints are required for the other nodes since they
are free to transmit to any number of nodes, or not
to transmit at all.

N
∑

j=1

Xij ≥ 1; i = source, i 6= j (35)

Since any number of transmissions can be made out of
a node i (only one of which adds to the overall cost),
the node reachability constraints in this formulation
can be simply written as4:

N
∑

i=1

Xij = 1; ∀j ∈ D, i 6= j (36)

Note the equality relationship in (36), as opposed
to the ‘≥’ relationship in the node reachability con-
straints in Formulation ‘A’ (31). An equality rela-
tionship works for this formulation because, if a node

4The column sums corresponding to non-destination nodes
should not be set to zero. In a multicast application, such
nodes can be used as relay nodes to reach intended destination
nodes. Forcing the column sums of non-destination nodes to
zero will preclude this possibility.



minimize

N
∑

i=1

Yi

subject to:

Yi −
N

∑

j=1

PijXij = 0; ∀i ∈ V, i 6= j (22)

N
∑

j=1

Xij = 1; i = source, i 6= j (23)

N
∑

j=1

Xij ≤ 1; ∀i ∈ {V \ source}, i 6= j (24)

Xij −
N−1
∑

k=1

Xijk = 0; ∀(i, j) ∈ V, i 6= j (25)

N
∑

j=1

Xijk = 1; i = source, i 6= j, k = 1 (26)

N
∑

i=1

N
∑

j=1

Xijk = 0; i 6= source, i 6= j, k = 1 (27)

N
∑

j=1

Xijk −
k−1
∑

p=1

N
∑

m=1

N
∑

n=1

Rmn(i)Xmnp ≤ 0; ∀i ∈ {V \ source}, i 6= j, m 6= n, 2 ≤ k ≤ kMAX

(28)

N
∑

m=1

N
∑

n=1

Xmnk ≤ 1; m 6= n, 2 ≤ k ≤ kMAX (29)

k−1
∑

p=1

N
∑

m=1

N
∑

n=1

Rmn(i)Xmnp +
N

∑

m=1

N
∑

n=1

Xmnk ≥ 1; ∀i ∈ {V \ source}, i 6= j, m 6= n, 2 ≤ k ≤ kMAX

(30)

N
∑

m=1

N
∑

n=1

Rmn(i)Xmn ≥ 1; ∀i ∈ D, m 6= n (31)

Xijk ≥ 0, integers; ∀(i, j) ∈ V, i 6= j, 1 ≤ k ≤ kMAX (32)

Fig. 5. IP formulation ‘A’ for the minimum power broadcast problem

j is reached from node i in the optimal solution, ei-
ther by a free transmission or a cost-incurring one, it
is not necessary for any other node in the network to
reach node j, using a free transmission or otherwise
(from a modeling aspect)5. Also, (36) effectively con-
strains the number of {Xij ; i 6= j} variables which
can have a value of 1 in the optimal solution to CD,
where CD is the cardinality of set D.

The constraints we have thus far can however lead
to loops and disjoint sets in the final solution, as

5In a physical system, a node may have no control on the
number of implicit transmissions it receives from other nodes.

illustrated in Figure 6. The solid lines in the fig-
ure indicate cost-incurring (actual) transmissions and
the dashed lines indicate free (implicit) transmissions.
Nodes 4, 5 and 6 form a loop in Figure 6. The sets of
nodes {1,2,3} and {4,5,6} are disjoint. Disjoint sets
and loops will generally be present in the solution if
there is a cluster of nodes (nodes 4, 5 and 6 in our
example) in the network which are far removed from
the rest of the nodes. In such a situation, (36) will
force a loop if the cost of the solution with the loop
is less than the cost of the true solution requiring no
loops and disjoint sets. It should be noted, however,



that loops may not necessarily be formed by cost-
incurring transmissions, as is the case in Figure 6.
Figure 7 illustrates a case where a loop is formed by a
combination of cost-incurring and free transmissions.

Fig. 6. Example to illustrate loops and disjoint sets

Fig. 7. Loop formed by a combination of cost-incurring and free
transmissions.

What we need therefore are constraints to prevent
any loops in the final solution. Referring to Figure 6,
if we can prevent the loop 4 → 5, 5 → 6, 6 → 4, one
of the nodes in the cluster {4,5,6} will be forced to
receive a transmission from any of the nodes in the
cluster {1,2,3} (thereby also solving the problem of
disjoint sets), as otherwise it will violate constraint
(36). This will also ensure that there are no disjoint
sets in the final solution. For example, if the loop is
broken at the edge 6 → 4, node 4 will violate (36) if it
does not receive a transmission from any of the nodes
in the cluster {1,2,3}. Similarly, if we can prevent the
loop between nodes 4 and 5 in Figure 7 and ensure
that there is no loop between nodes 4 and 6, node 4
will be forced to receive a transmission from any of
the nodes in the cluster {1,2,3}.

The argument that preventing loops will prevent
disjoint sets is valid only if a broadcast application is
assumed and may not hold for a multicast applica-
tion. For example, assume that nodes 2, 3, 5 and 6
in Figure 8 are the intended destination nodes. Since
node 4 is not a destination node, there is no require-
ment that it be reached. However, it is free to trans-
mit, as mentioned in footnote 4. Consequently, we
have a situation where node 4 transmits to node 6
(covering node 5 in the process), but does not have

to receive a transmission before it transmits. This can
be avoided by adding constraints stipulating that a
node (except the source) can transmit only if it re-
ceives a transmission from some other node.

N
∑

j=1

Xij ≤ (N − 1)
N

∑

j=1

Xji;∀(i, j) ∈ {V \ source}, i 6= j

(37)

With (37) in place, node 4 will be forced to receive
a transmission from any of the nodes in the clus-
ter {1,2,3} since receiving a transmission from either
node 5 or 6 will result in a loop.

Fig. 8. Disjoint sets can be present in a multicast solution even
when there are no loops.

Miller ([7]) suggested using the following constraint
to prevent subtours in TSP solutions.

Ui − Uj + NXij ≤ (N − 1)Xij ; ∀(i, j) ∈ V, i 6= j

(38)

where the Ui’s are sequencing variables and denote
the order in which the nodes are covered in the final
solution. Suppose nodes i, j and k form a loop. Using
(38), we have the three inequalities

Ui − Uj + NXij ≤ (N − 1)Xij

Uj − Uk + NXjk ≤ (N − 1)Xjk

Uk − Ui + NXki ≤ (N − 1)Xki

where Xij = Xjk = Xki = 1. Adding up the three
inequalities will give N ≤ (N − 1), a contradiction.
Equation (38) can therefore be used in the IP for-
mulation for MPB to prevent any loops (and thereby
also ensuring that there are no disjoint sets) in the
solution. Since the first transmission must be from
the source, we will use (38) in conjunction with:

Ui = 1; i = source (39)

Ui ≥ 2; ∀i ∈ {V \ source} (40)

Ui ≤ N ; ∀i ∈ {V \ source} (41)

The objective function (33) subject to (34) to (41)
and the integrality constraints

Xij ∈ {0, 1}; ∀(i, j) ∈ V, i 6= j (42)



solves the minimum power broadcast/multicast prob-
lems in wireless networks. While (37) is a required
constraint for multicast, it is optional for a broadcast
application. The number of variables and constraints
in this formulation are both of the order O(N 2).

Finally, it may be noted that while the {Yi} vari-
ables are required in this formulation for proper
power accounting, it is possible to write IP formula-
tion ‘A’ directly in terms of the {Xij} variables since
the {Yi} variables are related to the {Xij} variables
by equality relationships (22).

VIII. NOTE ON THE SOLUTIONS OBTAINED
USING FORMULATIONS ‘A’ and ‘B’

It is interesting to note that while the value of the
objective function will be the same in the optimal
solutions obtained using either of the two formula-
tions, the {Xij} variables can be different in the two
solutions. This is because of the manner in which
power expenditures are accounted for at the nodes in
the two formulations. In formulation ‘A’, a node is
constrained to a maximum of one transmission, the
power expenditure being simply the corresponding el-
ement from the power matrix. In formulation ‘B’,
however, a node can send as many as N − 1 trans-
missions, the power expenditure being defined as the
maximum of the cost of the individual transmissions.
We use Figure 9 to illustrate the above.
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Fig. 9. Example 6-node network: node 5 is the source.

The power matrix for the above network is:

P =



















0 10.78 9.89 13.55 2.53 8.34
10.78 0 4.06 1.73 22.56 1.45
9.89 4.06 0 1.15 16.78 8.54

13.55 1.73 1.15 0 23.83 6.10
2.53 22.56 16.78 23.83 0 20.00
8.34 1.45 8.54 6.10 20.00 0



















(43)

Using both formulations, the optimal node power set-
tings, assuming a broadcast application, are:

~Y (opt) = [10.78 0 1.15 0 2.53 0] (44)

The optimal value of the objective function is there-

fore:
∑8

i=1
~Y

(opt)
i = 14.46.

However, the status of the {Xij} variables in the
optimum solutions are different, as is evident from
(45) and (46),

X
(opt)
A =



















0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0



















(45)

X
(opt)
B =



















0 1 1 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0



















(46)

where X
(opt)
A and X

(opt)
B are matrices containing the

optimal {Xij} values for formulations ‘A’ and ‘B’.
While the actual transmissions in the optimal connec-
tion tree (which is [5 → 1, 1 → 2, 3 → 4]) are readily
evident from (45), it is not so in (46). To be specific,

the ‘1’ entries in row 1 of X
(opt)
B need to be matched

with the corresponding elements of the power matrix
(P12, P13, P16) to establish which entry corresponds
to the cost-incurring (actual) transmission, the rest
being free (implicit) transmissions. Using the power
matrix (43), we find that the transmission 1 → 2 is
an actual transmission while the others, 1 → 3 and
1 → 6, are implicit.

We can also observe that while all column sums
(except column 5, which is for the source) in (46) are
1, the row sums vary from 0 (row 2 for example) to 3
(row 1). In general, for a broadcast application, the

column sums in X
(opt)
B will all be 1 (except for the

source column), but the row sums can be any integer
between 0 and N − 1 (except for the source row for

which it will be at least 1). For X
(opt)
A , however, all

row and column sums are either 0 or 1 (for the source,
the row sum will be 1 and the column sum will be 0).

IX. IP FORMULATION ‘C’

This formulation is built upon a network flow
model and its interpretation follows from Formula-
tion ‘B’. A flow interpretation of the optimal {Xij}



values in (46) is shown in Figure 10. Node numbers
are in bold italics.

Fig. 10. Flow interpretation of the optimal {Xij} values in (46).

Since the solution in (46) is for a broadcast appli-
cation, we can interpret it in terms of the following
flow model:

1) Node 5 (the source) is the supply node, with

5 (sum of all elements in X
(opt)
B ) units of sup-

ply. In general, the number of units of supply
is equal to the cardinality of D, where D is the
set of all destination nodes.
All other nodes (in general, the set of destina-
tion nodes, D) are demand nodes, with 1 unit
of demand each.

2) The supply node routes all 5 units to node 1
(F51 = 5, where Fij is the flow in arc ij), which
keeps 1 unit to satisfy its own demand, while
forwarding the balance 4 units to other nodes.
Specifically, it sends 1 unit each to nodes 2 and
6 (F12 = 1 and F16 = 1) and 2 units to node 3
(F13 = 2).

3) Nodes 2 and 6 keep the units they receive to sat-
isfy their own demands. Node 3, on the other
hand, keeps 1 unit for itself and sends the re-
maining 1 unit to node 4 (F34 = 1).

4) Node 4 keeps the unit it receives to satisfy its
own demand.

Suppose we solve a network flow problem (we will
show later how to) and come up with the flows in
the arcs. How do we account for the costs involved
with the flows? First, we note that the cost of using
an arc is independent of the number of units (greater
than zero) flowing through the arc; i.e., no matter

how many units are sent through the arc ij, as long
as it is not zero, the cost is simply Pij , where Pij is
the (i, j)th element of the power matrix P. If there
is no flow in an arc, the cost is zero. For example,
the cost associated with the 5 units of flow in the arc
5 → 1 in Figure 10 is P51 = 2.53. This suggests that
we should define additional variables (say Xij) such
that Xij = 1 if Fij > 0.

Assuming that we are able to write out constraints
which satisfy the above relationship, we now have to
account for the fact that, in a wireless network, there
can be multiple flows out of a node but the net cost
incurred is the maximum of the individual costs due
to the positive flows in the arcs out of the node. For
example, the cost incurred at node 1 in Figure 10 is
simply P12 and not P16 + P12 + P13, since P12 >

P13,P16 (43). The tools to resolve this are already
in place, as we saw in Section VII. Defining Y1 to be
the cost incurred at node 1, the set of constraints

Y1 −P1jX1j ≥ 0; 2 ≤ j ≤ 6 (47)

will ensure that Y1 = P12, if the objective function is
to minimize

∑6
i=1 Yi.

We will now generalize the above approach for an
arbitrary N node network. Let V be the set of all
nodes and D the set of all destination nodes. The
objective function is:

minimize

N
∑

i=1

Yi (48)

As in IP formulation ‘B’, the first set of constraints
ensure proper power accounting at the nodes.

Yi −PijXij ≥ 0; ∀(i, j) ∈ V, i 6= j (49)

The second set of constraints relates the Xij variables
to the flow variables Fij and ensures that Xij = 1 if
Fij > 0.

CDXij − Fij ≥ 0; ∀(i, j) ∈ V, i 6= j (50)

where CD is the cardinality of set D. The coeffi-
cient of Xij in (50) is due to the fact that the max-
imum flow out of a node is equal to the number
of demand nodes (or destination nodes) in the net-
work. Equation (50) leaves open the possibility of
Xij being equal to 1 for Fij = 0. However, if there
is no flow out of node i, i.e., Fij = 0, ∀j, setting
Xij = 1 would unnecessarily increase the cost of
the optimal solution. On the other hand, if there
are multiple flows out of node i, suppose j∗ is the



node such that Ŷi = Pij∗Xij∗ = maxj (PijXij) is
part of the optimal solution. In this case, setting
Xij = 1, j 6= j∗, would not affect the cost of the opti-
mal solution if PijXij ≤ Pij∗Xij∗ (49). If, however,
PijXij > Pij∗Xij∗ , this solution cannot be optimal
since it can easily be improved by setting Xij = 0.

Next, we write the flow control equations (see for
example [9]):

N
∑

j=1

Fij = CD; i = source, i 6= j

(51)

N
∑

j=1

Fji = 0; i = source, i 6= j

(52)

N
∑

j=1

Fji −
N

∑

j=1

Fij = 1; ∀i ∈ D, i 6= j (53)

N
∑

j=1

Fji −
N

∑

j=1

Fij = 0; ∀i 6∈ D, i 6= j (54)

Note that (53) also serves as node reachability

constraints in this formulation, allowing non-
destination nodes to be used as hop nodes in a mul-
ticast application.

The final set of constraints express the integral-
ity of the Xij variables and non-negativity of the Fij

variables.

Xij ∈ {0, 1}; ∀(i, j) ∈ V, i 6= j (55)

Fij ≥ 0; ∀(i, j) ∈ V, i 6= j (56)

To summarize, the objective function (48) subject
to (49) to (56) solves the minimum power broad-
cast/multicast problems in wireless networks..

The number of variables in this formulation is ap-
proximately 2N 2 + N , roughly N 2 more than for-
mulation ‘B’ due to the presence of the additional
flow variables {Fij}. The number of constraints is on
the order of O(N 2). The most important feature of
this formulation is that, unlike formulation ‘B’, loop-
breaking constraints are not required here.

X. A NOTE ON PREVENTION OF DISJOINT
SETS AND LOOPS IN FORMULATIONS ‘A’, ‘B’

and ‘C’

It is interesting to note that prevention of loops and
disjoint sets is handled differently by each of the three
IP models discussed for the MPB problem. Formula-
tion ‘A’ does not have any loop prevention constraints
but uses the node transmission blocking constraints

(28) to prevent disjoint sets. It can be argued that
if there are no disjoint sets in the MPB tree, there
can be no loops either in the solution obtained using
this formulation. To see why, let i → j be the mth

transmission and j → i be the nth (n > m) trans-
mission in the MPB tree. First, we consider the case
where no other node is reached by either of these two
transmissions. In this case, clearly, one of them can
be deleted from the solution, leading to a reduction
in the overall tree power. The same is true if the set
of nodes reached by the transmission i → j is exactly
the same as the set of nodes reached by j → i (i.e,
Rij = Rji). Next, we consider the case where there
is at least one node which is reached by any of the
two transmissions but not by the other. For exam-
ple, suppose i → j also reaches nodes p1 and p2, while
j → i also reaches nodes p1, p3 and p4. Clearly, node
j does not need to reach either i or p1 since these have
already been reached by prior transmissions. Assum-
ing node p3 is nearer to j than p4 and p4 is nearer to
j than i, the MPB tree can be improved by choosing
the transmission j → p4, which will ensure that node
p3 is covered as well.

Formulation ‘B’, on the other hand, uses the loop
prevention constraints suggested by Miller [7] for solv-
ing the TSP to prevent loops in the MPB tree. As ar-
gued in Section VII, the loop-prevention constraints
are sufficient to prevent any disjoint sets in the broad-
cast tree. However, for a multicast application, addi-
tional constraints preventing a node from transmit-
ting unless it receives from some other node are re-
quired to prevent disjoint sets (37).

Finally, we note that Formulation ‘C’ solves the
problem of loops and disjoint sets by using an un-
derlying flow model, with the flow balance equations,
(51) to (54), ensuring the validity of the solution re-
turned by the model.

XI. CONCLUSION

We have proposed three integer programming mod-
els to solve the minimum power broadcast prob-
lem in wireless networks. Currently, we are using
an LP-based branch-and-bound method for solving
the models. Development of sophisticated and cus-
tomized methods, using cutting planes or branch-
and-cut techniques, for example, will be taken up in
future. An analytical study of the tightness of the IP
models as also the properties of their LP relaxations
are also planned for the future.

While optimal solutions can now be obtained for
fixed wireless networks (i.e., networks where the



nodes are not mobile), the IP models can also be used
to assess the performance of heuristic algorithms for
mobile networks by running them at discrete time
instances. The possibility of using a heuristic patch-
up procedure together with optimization at regular
time intervals for mobile networks also needs to be
explored.
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